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Unit-1 Wave Mechanics

e Wave Equation :

[ If electrons have the wave properties then there must be a wave
equation and a wave function to describe the electron waves just
as the waves of light, sound and strings are described.

A Let us consider the motion of a string which is held fixed at two
ends x = 0 and x = a. Upon certain kinds of vibrations a simple
wave can be produced.

4 If the wave travels in the y-direction, mathematically these
motions can be described by functions of the form

y(xt) = fx)eot) o (1)
where f(x) is independent of t and ¢(t) is independent of x.
Such motions are called normal modes of vibration.
A The wave equation has the general form :
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where c is called the wave velocity.
A Substituting for y from, Eq. (1) in Eq. (2)
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where -w?is constant.
A Separating x and t we get two differential equations:
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A The solution of equation (4) is given as:
P(t) =ASINWt+BCOSWt cevcncrrecnemenaae COD
where the A and B are constants determined from the boundary
conditions, and w is called the circular frequency which is related to the
ordinary frequency




W =2 (7)
A Equation (%) may therefore be written as :
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A Putting A = ¢/ 7the solution of equation (8) becomes :
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A Where A,, A,, C and D are constant.
A Let us consider Eq. (9) and impose the boundary conditions
(i) f(x)=0 at x=0 and (ii)f(x) =0 atx = a,
where a is the length of the string.
From the boundary condition (i), D =0
and from the condition (ii)
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A The normal modes are thus the stationary sine waves given by
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A The complete solution for a normal mode in a stretched string
therefore from Egs (1), (6), (7) and (11) is given by :
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A Equation (12) is an expression for the amplitude of waves
generated during the normal modes of vibration in a stretched
string. The same equation should represent the amplitude of a de
Broglie wave associated with a moving particle. We are, primarily
concerned here, with the time-independent or stationary waves.
Therefore, the equation for a standing sine wave of wavelength (A)
is given by :

VY = C s z;‘x..........----CI'B)

where & is the wave function and C is the amplitude of the wave
A Double differentiation of Eq. (13) with respect to x gives
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A The kinetic energy T of a moving particle of mass m and velocity v
is given by :
T=%mv: = miWV%/2m ... (15)

A According to the de Broglie,
T = h?/ 2mA?



A Substituting equation(14) in equation(16) we get :
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[ If the particle moves in a field whose potential energy is V, then
E=KE+PE. =T+V 2

T=E-V = _‘l“' '.dq’ e 2)
entm W gx* T - ¢!

where E is the total energy. This is Schrodinger's equation for a
particle in one dimension. It is usually written as
d'v _gn'm
dx? W
 In three dimensions this equation becomes:
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e Interpretation of " and Heisenberg's Uncertainty Principle :

<E ._\/) Y= O - <\

[ In classical mechanics the square of wave amplitude associated
with electromagnetic radiation is interpreted as a measure of the
radiation intensity.This suggests that de Broglie waves are
associated with electrons or any moving particle.

A Let the solution of wave equation (20) be a function ¥ (x.y,z),
called wave function. We may anticipate that some some
physically observable property of the electron is connected to
P? (x.y,z) or more generally ¥ (x.y,z).% (x.y,z) if & is a complex
wave function.

O For a system having electrons there are two ways in which |¥?| or
|®®] can be interpreted. Either |®?%| may be regarded as a
measure of the the density of electrons or |®?|dr be interpreted as
a measure of probability of finding the electrons in a small volume
dr in a certain region between r and r + dr.

[ This implies that if we know ¥ exactly we cannot say precisely
where the electrons can be found. This destroys the classical
concept of a precise trajectory (Ol[a u).

A Let us consider an electron of mass m, with momentum P, moving
in a zero potential field along the x-direction only.The wave
equation for such particle according to wave eq. Theory Is given

by:
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A The wave function ®{x) is given by either exp (ikx) or exp (-ikx).
We now ask whether the electron whose momentum is p, can be
found. The answer is given by:

| 2°(x) ®(x) | Which can be written as:
P(x) P(x) = exp (ikx) exp (-ikx) =1

A According to Born interpretation, this result implies that the
probability of finding the electron in a region dx is situated. Thus
quantum mechanics says that if any part of the space is inspected,
the probability of finding the electron remains the same. In other
words, if the momentum of a moving particle is precisely known, its
position is totally uncertain.

A In 1927 Heisenberg derived a famous principle : In classical
mechanics one can simultaneously determine as many properties
of a system of any particle as one wishes, to any degree of
accuracy. This is not true in wave mechanics.

[ Suppose a tiny particle is at rest. We want to find its exact position
by looking through a microscope. To see a particle we must hit the
particle with photons. If the light has a wavelength A, we cannot
expect to determine the position within a distance shorter than A
because of diffraction. So A is the order of the uncertainty in the
measurement of position.

A But a photon of wavelength ¢ has a momentum | h/A | When a
photon collides a particle it transfers this much momentum to the
particle and the uncertainty in momentum is | h/A |. The product of
the uncertainties of the position and momentum is A (h/A) = h.

A According to more accurate treatment of Heisenberg, his principle
states that :



If the momentum is known to lie within a range Ap, along, say, the
x-axis then the position of the particle on this axis must be
uncertain to an extent of Ax where
Apx.Ax;.L e e ae e CHD
4R
(A To accept the Born interpretation of the wave function. For this
reason |¥?| or |®®] may be called the probability function. Since
the electron must be somewhere in space, the integration of |2
or |¥¥P] over all space must be unity, so that
[®(r) ®(r) =1
Such wave functions are said to be normalised. For every
system which is bound, every wave function must satisfy.

e Properties of &

A The solution of Schrodinger wave equation gives several values of
P. It is not necessarily all of them that correspond to any physical
or chemical reality. Such wave functions are therefore considered
unacceptable. Acceptable wave functions are those which satisfy
the following conditions:

1. @ is single valued, i.e. for each value of the variables x, vy, z,
there is only one value of the function ®. If one of the
variables is an angle, say 0, then it requires that

¥0)=T(0+ 2nn) where n is an integer.

2. ¥ and its first derivative d®/dx with respect to its variables
are continuous, In other words, there must not exist any
sudden changes in @ as its variables are changed.

3. For boundary states % must vanish at infinity. If ¥ be a
complex function, then ¥ must vanish at infinity.

If above three conditions are satisfied the function #'is called
well behaved wave function.
e Operator concept in Quantum Chemistry :
e First (basic) Postulate of quantum mechanics :
A  To every physically measurable or observable quantity like
position, velocity, linear momentum, angular momentum, energy,
etc. of a system there corresponds an operator in quantum



mechanics. This may be treated as one of the several basic
postulates of quantum mechanics.

A An operator is a symbol for a certain mathematical procedure
which transforms one function into another. For example, the
operator of evaluating the derivative with respect to r is
represented by the symbol d/dr. When this operator is applied to

the function r we obtain a new function as :
n-\
.4. (x_'"‘) = MK
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A A list of typical examples of different mathematical operations

along with the results of the operations on the function, x3® is given

in Table.
Operation Operator Result of operation
on x*

Taking the square () x®

Taking the square root T x32

Multiplication by a constant k K kx3

Differentiation with respect to x | d/dx 3x?

Integration with respect to x J( )dx x*/4+c

A (Operator) (function) = (Another function)
Symbol of operatoris: € 7~ )
The function on which the operation is carried out is often called an
operand.

e Additional and Subtraction of Operators :
New operators can be constructed by adding and subtracting
operators.If A and B are two different operators, then new
operators can be defined as :

PN A A
(A+B)f = Af +Bf

s A A
(A-B)f = Af-Bf



[ where fis an operand. It is also true that

N\ A~ A
A+B=B+A
/\ AN
A-B= -B+A

[ Multiplication Operator :
A The consecutive operations with two or more operators on a

function may be called the multiplication of operators. Let A and B
represent two different operators and f, an operand. Then, the
expression A B f means that the function f is first operated on with
B to obtain a new function, f as

Bf=rf

Then f' is operated on by A to obtain the final function f* as

Af =f

So that

A A

ABf =f

The order of application of operators is always from right to left as
they are written.

[ If the same operator is applied several times in succession, it is

written with a power. Thus
AAf = A*f
Linear Operator :

A If in operating on the sum of two functions an operator gives the

same result as the sum of the operations on the two functions
separately, then the operator is said to be linear. Thus the operator
A is linear if for any functions f and g we have :

A (f+g) = Af + Ag
And Acf =cAf where cis a constant.

The operation of taking square root is non-linear because
Vi+g # Vf+1g

Commutator :

. "
A Using any tﬂo\operators A and B, it is possible to construct a new

opere}:cor AB - BA, called the commutator of the two operators A
and B usually wﬂtte,r\l as [A, B]. If these two operators commute
then [A,B] =AB-BA =0



A Thus the commutator means the multiplication with zero. Clearly,
every operator commutes with itself or any power of it. Thus, for an
operator A,

AA"-A"A =0

e Vector Operator :

A Operators operating more than one variable are called vector
operators. E.g. / x (differential operator) can operate on the
function f(x, y, z) with variable x,y,z. An important group of
operators are the vector operators. A vector operator v(del) is
defined in Cartesian coordinates as :

V=id/d§x+jdI§y+kdyz
where 1, j, k are unit vectors along the x,y and z axes.
Operating on a scalar function ¢, this operator generates a vector
called the gradient of ¢.
Vo=igo/dx+jdoldy+k do/§z
e Laplacian:
A In the quantum mechanics the Laplacian operator V2defined as

V2= le‘xz + J"/ayz + le‘zz

e Second Postulate of Quantum Mechanics :

e Another basic postulate or Law of Quantum Mechanics :

A “The only possible values that can be observed of a physical
properties like angular momentum, energy etc. of a system are the
eigenvalue A, in the operator system.

e AT =0T (i)
Where, A is the operator for physical quantity and 2 is well
behaved eigen wave function.
There are two types of operators that obey the eigen value
relationship.

> Hermitian operator:

An operator A is said to be Hermitian if,
[T (A®,) 8T = A®). T, 8T ... (i)

Where %, and %, are eigenfunctions of the operator A.
Equation (ii) is a mathematical form of “turn-over rule”.



* indicates the complex conjugate of the quantity immediately to its
left. The hermitian operator is linear and it has real eigenvalue.
If A is hermitian operator operating on eigenfunction %, it gives
eigenvalue ‘a’ then

AT =a®. ... (iii)
Multiplying both side of equation (iii) with ¥* and integrating over
all space, we get

[TA®PYIT= alT®ST ................... (iv)
Taking the complex conjugate of every quantity in equation (3),
AT =a® ... (V)

and then multiplying both sides of eq.(v) with % and integrating
over the space,
[PAT T = a[PPET.................... (vi)

The left hand side of eq. (iv) and (vi) are equal according to the
definition of a hermitian operator, so that
alPPOT= a|[PPET ..., (vii)

In other words, a = a” which is true only if a is real. This guarantees
that any physical quantity represented by a hermitian operator is
observable and physically measurable.
> Unitary operator :
A linear operator U is said to be unitary operator
[T U"'P,eT = [, 0PdT.............. (viii)

where the operator U™ is the inverse of U such that
U'0=00"=1and, %, and %, are any two eigenfunctions of U
and the asterisk stands for the complex conjugate quantity.
Consider the equation :

UP=AT . i, (ix)
where A is the eigenvalue. Then

U'0P==0A0"%................... (X)
Or U'®=MT ... (xi)

Inverse operator U-' has the same eigenfunction as U but with
reciprocal cigen value. Multiplying both sides of Eq. (2.26) with y
and integrating over all space



Taking the complex conjugate of Eq. (ix)

~

U =M e (xiii)
Then, [ 0¥ 8T = )o@ HT.......... (xiv)
R.H.S. of eq. (xii) and (xiv) are equal, so that

A=A or Ah=1................ (xv)

Thus eigenvalues of an unitary operator have modulus one.
Setting up of Operators for Different Observables :

It has been already mentioned that every dynamical variable
is assigned a linear operator. According to classical mechanics,
most dynamical variables may be expressed in terms of the
position and momentum coordinates such as x, y, z, p,, p,, Or p,.
The rule for setting up their quantum mechanical operators is
simply to take the classical expressions and replace x, y, z, p,, p,,
and p, by the corresponding operators. Operators corresponding to
positions along x, y and z axes are simply the multiplication by the
variable itself. Operators for linear momenta may be found from
the following considerations.

A beam of electrons travelling along the x-direction can be
treated as a wave propagating along the x-axis. Taking these
waves to be sinusoidal, the wave function may be written as :

P =ASinN28X/ heeeeonei (i)

Where A is the wavelength. An equivalent form for the
time-independent wave is :

Y=Cexp[sin2mix/A]................... (i)
274
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Using de Broglie's relationship, i.e. A= h/P, , one may write

Py = ';‘,‘J ’ %3,’; e reemanneen CIVD

Therefore, the operator corresponding to the linear
momentum in the x-direction is written as :

Px =;;d g;:
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Similarly for Byand P2one can write

A o_h s _h 9 N1
Py=2mi gy * Pz="2xid2 7
That the operator, say p,, is hermitian is shown as follows :
+o
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The first term on the right hand side is zero since both %, and %,
vanish at infinity. The second term on the right hand side can be

written as :
fvl 2R &x§| \V OLD

Thus, the linear momentum operator is hermitian, hence linear
momentum is observable.

The classical expression for the total energy of a single
particle of mass m is called the hamiltonian, usually denoted by H
and is given by :

1 2
2
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where v is the linear velocity, P the momentum, and V the potential
energy of the particle. Written in terms of the components of the
linear momentum p, H becomes :
H— b2k PP EPE Vi
a2m
The operator, say Par. is taken to mean that the corresponding
operation Py, is to be repeated twice, so that ;

Ay ' N2 A 2
P + Py + P2

[ ][ 5]+ 5] 5 &
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Substituting eq.(ix) in eq.(viii) ;
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which can be proved to be hermitian and linear. If there are several

particles then,
2
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where m, is the mass of the i" particle and V2 is Laplacian
operator containing the coordinates of i particle.

Another important dynamical variable is the angular
momentum. For a single particle moving around a fixed point, the
angular momentum L is given by the vector product of r and p as :

where r is the radius vector from a fixed point and p, the
linear momentum vector. Both the vectors r and p can be written in
terms of their components as :
r=ix+jy+kz
p=ip, tjp, T Kp,....oooo (xiii)
where 1, j and k are unit vectors along x, y and z axes.
Therefore, in terms of the components of r and p, the angular
momentum, L is

=i(yp, - zp,) + j(zp, - xp,) + K(Xp, - Yp))-......... (xiv)

Replacing the p's by the corresponding quantum mechanical
operators, the operators for the components of angular momentum

are as follows:
N h F a - z-——_l
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The total angular momentum is obviously given by

L=iL,+jL,+ KL, .............o (xvi)
However, more important in quantum mechanics, is the scalar product of
L with itself,

LL = L? = L2+ L2 + 1% ..cce--e. (XV0Y)
The angular momentum operators are usually expressed in spherical
polar coordinates.
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Let us consider the component of angular momentum about z-axis.
That this operator is hermitian can be shown as foIIows

L h v,
J‘-Y,, 2”4 24, \y\"‘P_g-x_,, I[“’z "I’:I fq’l - 4’}
L - T (xix)
Since the functions %,(¢) & ®,(¢) must be single valued i.e. for any (@)

WD) =T (2B + D)oo, (xX)

the first term on the right hand side of Eq. (xx) must vanish. Therefore,
Eq. (xx) can be written as :



Because of the equivalence of L,. L, and L, an operator
corresponding to any component of angular momentum is
hermitian. So must also be hermitian. This shows that not only
any component of angular momentum about any axis but also total
angular momentum in a system is observable from the quantum
mechanical view point.

A
Eigenvalues of |z :
In accordance with the basic postulate embodied in
Eq.A® = A® the possible values of the component of angular
momentum about z-axis, the axis of rotation, are given by the
solution of equation

tz‘-l’ MY
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Since the function % must be single valued, it follows from Eq. (xx)
that :

o [2232 4] = emp[ 332 ca2m]

exp(ikg) = exp( ik [@ + 2x]) Where k=2rA/h
Or exp(2nik) = 1
In other word cos(2nk) + i sin(2r%k) =
which is possible only if

k=0,%1,%2 3 ............. *n

Or A must be either zero or integral multiple of h/2x. This
results in exactly what Bohr postulates about angular momentum
of an electron in an atom. In other words, the component of
angular momentum about any axis forms a discrete
eigenspectrum. On the other hand, it can be shown that in the



absence of any restrictions, the component of linear momentum
along any axis forms a continuous eigenspectrum.

Third Postulate of Quantum Mechanics :

According to the second postulate given by A% = A® the
given eigenvalue A which a measurement of an observable
characterised by an operator A may be written as :

A = Av
%

But this form of expression is not used in quantum
mechanics, because it varies from place to place and cannot be
equated to a constant A. If, both the numerator and the
denominator on the right hand side of above Eq. with ¥ and
integrated over the entire space, we get :

[wAw D'T/ [® ¥ 8T no longer becomes a function of the
coordinates (x,y,z). Thus it can be equal to the average value of
the constant A.

The third postulate may then be stated as follows:

“When a great many measurements of any observable
represented by an operator A are made on a system characterised
by a function %, the average result obtained is given by :

fw*aAyoT
fw ot
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Fourth Postulate of Quantum Mechanics :

The fourth postulate may be stated as follows:
The time development of a wave function is given by :

ih oy 4

which is Schrodinger's equatlon where H is the hamiltonian
operator. If we substitute H= — h* vz'.,,\,

in Eq. (i) R
2
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The wave function ¥ is obviously a function of the space
coordinates of a particle, i.e. x, y, z and time t. Using a collective
symbol r for the space coordinates, X, y, z, Eq. (ii) can also be
written as :

ih Jw

z q- s
- :xl'm %i;’_-\-\lcm v SRt (iii)

Where V the potential independent of time. Such an equation can
be solved easily by assuming the separation of variables. Thus,
the wave function ¥ may be factored into two functions, one
depending only on r and the other on t.
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e Wave mechanics of some simple system with constant
potential energy :

As an example, we consider the exact solution of
Schrodinger's equation for a system of an electron confined in a
box in which the potential energy is either zero or constant and
infinite everywhere else outside the box. The mathematics is
simple for this system but the results illustrate some important
properties of quantum mechanical systems, such as quantisation
of energy, quantum numbers, zero point energy, etc. In fact, this
system provides the basis of the free electron approximation to
molecular orbitals which we shall deal with in a later chapter.

e One Dimensional Box :

Suppose an electron of mass m, is constrained to move in
the x-direction from x = 0 to x = a. Outside this region(0 to a) the
potential energy, V is taken to be infinite, and within this region it is
zero (because one electron possess wave nature so it can move).

o0 o9
- V:OQ
V=0 V=0 v
xz0 > otzel
4D Box

Outside the box the Schrodinger equation is,

9 2
m
d—_‘.—P2 +8K_zeCE -&)\‘/ =o ® o0s 000 C"’
doc h
This equation is satisfied if ¥ is zero at all points outside the box.
In other words electron cannot be found at all outside the box.



Inside the box the wave equation is,

d*v 87(27"6.
Iz hr EWV=0 _ ... ¢2>

Equation (2) may be written in the operator form
h  d

gx2me dac?

2

ﬂ\v= EWV Whese H =—

According to the third postulates of quantum mechanics, the mean
value of E is observable and independent of the coordinate of the
electron. Now we refer to E as the mean value of energy and

assume, 2
MmMe 2
BRMe £ = ki ¢
h?—

Where k* is a constant independent of x. Equation (2) can be
written as :

2
2
d_\P R Y =0 .ccvccasslD
dx?
The solution of equation (4) is,
P=Ccoskx+Dsinkx........................ (5)

In order to be a well-behaved wave function ® must be a
continuous function of x in between x = 0 to x = a. While outside
this ¥ must be zero.
From the boundary conditions,
(i) =0, at x=0 hence from eq.(5) C=0 and
(if) =0 at x=a, we have
Dsinka=0 .............o.ooiiii (6)
Orsinka=0 or ka=n® ...................... (7)

where n is called a quantum number which is either zero or a
positive integer. Thus, the permitted solutions are

Wn = DSinSo ... 9



From Eqgs (3) and (7), E is given as,
K2h*  _ mh”
E = = —_—
ex"'me. S Me a"

If the potential energy inside the box is not zero but constant equal
to say, V, then the energy spectrum is given by

SMme o

Although the value zero for n is permitted it is not acceptable
because the function ¥, of Eq.(5) becomes zero; but an electron is
assumed to be always present inside the box. Therefore, the
lowest kinetic energy, called the zero-point energy, of an electron
in a box is given by [substitute n = ;—in Eq. (9)].

LI B Cq)
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This shows that the electron inside the box is not at rest even
at 0 K. Therefore, the position of the electron cannot be precisely
known. Since only the mean value of the kinetic energy is known,
the momentum of the electron is also not precisely known. The
occurrence of the zero-point energy is therefore in accordance with
the Heisenberg uncertainty principle.

If the walls of the box are removed and an electron is free to
move without any restriction in a field whose potential energy may
be assumed to be zero and in the eq. (2) and (5) C,D & k* have
any value, then the enezrgyagiven by

E= BRE e cceereeeen €120

This energy is not quantised in this case. Thus, when an electron
is bound in a system it has quantised energy levels given by Eq.
(9) or (10) and it leads to a discrete spectrum. On the other hand,
a free electron moving without any restriction has the continuous
energy spectrum. This qualitatively explains the occurrence of con
tinuum in the atomic or molecular spectra on ionisation because an
electron lost by an atom or molecule is free to move without any

restriction.



e Normalisation and Orthogonality :

The wave functions for the various states of an electron in a box
are given by Eq. (8). The probability distribution is
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The integral of this wave function over the entire space in the box
must be equal to unity because there is only one electron and at all
times it is somewhere in the box Therefore
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Thus, the normalised wave function of an electron in a
one-dimensional box is given by

Wy, = , iM% ... IS

e Orthogonality :
Consider the normalised wave functions %, and %, corresponding
to two different states of an electron in a box. It is found that for
nn’ e
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o

The wave functions for different states of this system are thus

orthogonal This can be shown as follows: '
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Since the hamiltonian for an electron in a box is a hermitian
operator, the wave function %®, and %, corresponding to two
different states should be orthogonal.

Characteristics of the Wave Functions :

A few energy levels and the corresponding wave functions are
shown graphically in figure. Imagine a one-dimensional mirror
which is parallel to the walls of the box and situated at the centre
of the box as shown by the dotted line in figure. It should be noted
that the wave functions are alternately symmetrical and
antisymmetrical with respect to reflection from such a mirror.
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Besides the points on the walls of the box, there are points inside
the box where the wave function is zero. These points are called
nodes. It is evident from the figure that as the quantum number n
increases, the number of nodes on the wave increases. For
example, the state whose wave function is %, has (n - 1) nodes
inside the box. This type of behaviour is general for all systems.
Increasing the number of nodes decreases the wavelength, which
corresponds to increasing the kinetic energy.



